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The FBD skyline model applied to stratigraphic ranges

Stadler [2] introduced the fossilised birth-death process for the phylogenetic analysis of

extant and fossil samples, and Gavryushkina et al. [1] and Zhang et al. [5] extended

this model to account for rate variation across different time intervals (the FBD sky-

line model). Stadler et al. [3] later introduced the FBD range model for the analysis

of stratigraphic range data, defined as the interval between first and last appearances

in the fossil record, in the absence of information about the underlying phylogenetic

relationships. Here, we extend this modelling framework to account for temporal rate

variation in speciation, extinction and fossil sampling.

Model notation assuming constant rates

First, we define the key model parameters assuming constant rates. The process begins

with a single lineage at origin time x0. Each lineage has instantaneous branching specia-

tion rate λ and extinction rate µ. Here, we assume all speciation occurs via asymmetric

(budding) speciation, i.e. speciation events give rise to a single new species and do not

result in the extinction of the ancestor (parent) species. Fossil sampling occurs along

each branch with rate ψ and extant species are sampled with probability ρ. The process

gives rise to a total of n species, with m extinct and n − m extant species. The total

number of fossils sampled is k. Given potential incomplete species sampling, species i

attaches to the tree at time bi and goes extinct at time di. The origin x0 is equal to the

oldest bi time. The age of the first and last fossil samples are oi and yi, respectively. Note
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if species i has been sampled only once, i.e. species i is a singleton, oi = yi, and if species

i is extant yi = di. If species i has been sampled only once at the present oi = yi = di.

To account for uncertainty in phylogenetic relationships, we can integrate over all possi-

ble tree topologies by defining γi, which is the number of co-existing lineages at time bi.

Since typically we only sample oi and yi we can also marginalise over all possible attach-

ment and extinction times, assumming bi > oi and di < yi. Stadler et al. [3] derived the

probability density for a given set of n stratigraphic ranges, D = (k, {bi, di, oi}i∈1...n),

given that we have no information about the underlying topology.

Let Q(t) represent the probability of a not-yet sampled lineage evolving from time

t according to a process in which one lineage arising from each unobserved speciation

represents a new species, and the other lineage represents the continuation of the parent

species. However, only one descendant lineage is ultimately sampled. Since the lineage

has not yet been sampled, either descendant lineage can potentially represent the con-

tinuation of the parent species (i.e. the parent species may be ultimately sampled, or

it may go extinct while the descendant species is ultimately sampled). This process de-

scribes the evolution of a lineage during the time when it has not yet been sampled, i.e.

between its origination point bi and the time of its first fossil sample oi. The probability

Q(t) is described by the differential equation,

d

dt
Q(t) = −(λ+ µ+ ψ)Q(t) + 2λQ(t)p(t) (1)

where p(t) is the probability that an individual at time t in the past does not leave

any sampled fossils or sampled extant descendants (derived in [3]).

Let !Q(t) represent the probability of a lineage evolving according to a similar pro-

cess, but assuming at least one sampling event has occurred, so that the lineage arising

from each speciation event that is ultimately sampled can always be identified as a con-

tinuation of the parent species lineage, and therefore by the same descendant branch
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(left or right). This process describes the evolution of a lineage since the time when it

was first sampled, i.e. between its first fossil sample oi and its extinction time di. This

probability is described by the differential equation,

d

dt

!Q(t) = −(λ+ µ+ ψ) !Q(t) + λ !Q(t)p(t) (2)

Let q(t) and !q(t) represent solutions to equations (1) and (2), respectively. For

stratigraphic range i, the initial condition for Q(t) is Q(oi) = !Q(oi), and therefore

Q(t) =
q(t)
q(oi)

!Q(oi). The initial condition for !Q(t) is !Q(di) = ci, where ci = µ if di > 0

and ci = ρ if di = 0, and therefore !Q(oi) =
!q(oi)
!q(di)ci. Therefore, the probability of observing

range i starting from time bi is Q(bi) =
q(bi)
q(oi)

!q(oi)
!q(di)ci.

Thus, the joint probability density for the full set of species ranges and k fossil

samples D = {k, (bi, di, oi)i∈1...n} is

f [D | λ, µ,ψ, ρ] = ψkλn−1
n"

i=1

γiQ(bi)

= ψkλn−1
µ
mρn−m

n"

i=1

γi
q(bi)

q(oi)

!q(oi)
!q(di)

(3)

Analytical expressions for q(t) and !q(t) are derived in [3], and are as follows

q(t) =
4e

−c1t

(e−c1t(1− c2) + (1 + c2))
2

c1 = |
#

(λ− µ− ψ)2 + 4λψ |

c2 = −λ− µ− 2λρ− ψ

c1

!q(t) =

$
q(t)e−(λ+µ+ψ)t

Note !q(t) here refers to !qasym(t) in Stadler et al [3].
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Conditioning on observing at least one sampled descendant

In some cases, we may want to condition on the event that at least one speciation occurs

and that this speciation event leaves at least one sampled descendant. Denote the latter

event by S, where f [S | λ, µ,ψ, ρ] = λ(1− p(x0)). Then,

f [D | λ, µ,ψ, ρ,S] = f [D | λ, µ,ψ, ρ]
1− p(x0)

where

p(t) =

λ+ µ+ ψ − c1
(1+c2)−(1−c2)e−c1t

(1+c2)+(1−c2)e−c1t

2λ
(4)

Incorporating piece-wise constant rate variation

Next, we derive the probability density for D allowing speciation, extinction and sam-

pling to change over time in a piece-wise fashion, following theory already outlined

in [4, 1, 5]. We define l time intervals [ti, ti−1) for i ∈ {1, ..., l} with minimum ages

t1 > t2 > . . . > tl between the present tl = 0 and the past t0 = ∞. Within each interval

i, constant birth, death and sampling parameters λi, µi,ψi apply. Parameter ρ only

applies to the present time tl = 0.

For this model, we must define piece-wise expressions for Qi(t) and !Qi(t) in each

interval i. In this case, the initial conditions for !Qi(t) at time t ≥ ti in interval i < l for

stratigraphic range j are !Qi(ti) =
!Qi+1(ti) if ti > dj , and

!Qi(di) = cj if dj < ti. Thus,

we have

!Qi(t) =

%
&&&'

&&&(

!Qi+1(ti)
!qi(t)
!qi(ti)

t ≥ ti > dj

cj
!qi(t)
!qi(dj)

t ≥ dj > ti

and therefore
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!Qi(oj) = cj
!qi(oj)

!ql(dj)(dj)

l(dj)−1"

k=i

!qk+1(tk)

where l(t) gives the index i such that ti−1 > t ≥ ti.

Similarly,

Qi(t) =

%
&&&'

&&&(

Qi+1(tj)
qi(t)

qi(ti)
t ≥ ti > oj

!Qi(oj)
qi(t)

qi(oj)
t ≥ oj > ti

and therefore,

Qi(bj) =
!Ql(oj)(oj)

qi(bj)

ql(oj)(oj)

l(oj)−1"

k=i

qk+1(tk)

Thus, for a given set of n stratigraphic ranges allowing for piece-wise constant rate

variation across l intervals, assuming we have fossil counts kj for each interval j, the joint

probability density of the joint set of species ranges and interval-specific fossil counts

D = {(bi, di, oi)i∈1...n, (kj)j∈1...l} is

f [D | λ̄, µ̄, ψ̄, t̄, ρ] = 1

λl(x0)

l"

i=1

ψki
i

n"

i=1

λl(bi)

n"

i=1

γiQl(bi)(bi)

=
ρn−m

λl(x0)

l"

i=1

ψki
i

n"

i=1

λl(bi)

m"

i=1

µl(di)

×
n"

i=1

γi

)

* ql(bi)(bi)

ql(oi)(oi)

!ql(oi)(oi)
!ql(di)(di)

l(oi)−1"

j=l(bi)

qj+1(tj)

l(di)−1"

j=l(oi)

!qj+1(tj)

+

, (5)
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with the following solutions to the differential equations for Qi(t) and
!Qi(t)

qi(t) =
4e

−Ai(t−ti)

-
e−Ai(t−ti)(1−Bi) + (1 +Bi)

.2 ,

Ai =

#
(λi − µi − ψi)

2 + 4λiψi,

Bi =
(1− 2(1− ρi)pi+1(ti))λi + µi + ψi

Ai
,

pi(t) =

λi + µi + ψi −Ai
(1+Bi)−(1−Bi)e

−Ai(t−ti)

(1+Bi)+(1−Bi)e−Ai(t−ti)

2λi
,

!qi(t) =

$
qi(t)e

−(λ+µ+ψ)(t−ti).

Again we can condition on the event S, of sampling at least one individual, where

f [S | λ̄, µ̄, ψ̄, t̄, ρ] = λl(x0)(1− p1(x0))

f [D | λ̄, µ̄, ψ̄, t̄, ρ,S] = f [D | λ̄, µ̄, ψ̄, t̄, ρ]
1− p1(x0)

Marginalising over the number of fossils within a stratigraphic range

Next we extend the skyline model to incorporate alternative sampling scenarios. In some

cases we may not know the exact number of samples collected during a given interval.

Instead, we may only know the ages of the first and last fossil occurrence for each species

(oi, yi). Thus, we define κ′j as the total number of fossil samples representing either

first or last appearances in interval j (i.e. within the interval [tj , tj−1)). Next, letting

dj(t) = t− tj we define Lj =
/n

i=0 d
+
j (oi) − d

+
j (yi) as the total duration of all sampled

stratigraphic ranges overlapping interval j. Using the same approach as Theorem 14 in

[3], we integrate over the unknown occurrence times of the kj − κ′j intermediate fossil

samples, then sum over kj to give the probability density for the joint set of species
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ranges and first/last occurrence counts Dr = {(bi, di, oi)i∈1...n, (κ′j)j∈1...l}

f [Dr | λ̄, µ̄, ψ̄, ρ] ∝ f [D | λ̄, µ̄, ψ̄, ρ]
l"

j=1

e
ψjLj (6)

where the constant of proportionality is
0l

i=1 ψ
ki−κ′

j

i .

Marginalising over the number of fossils within a stratigraphic interval

Instead of recording the fossil sampling times or the age of first and last appearance

times for a set of stratigraphic ranges, we may only know whether a species was sampled

during the time interval [ti, ti−1]. We refer to this as presence/absence fossil sampling.

We use Si,j to indicate the sub-branch spanned by species lineage i in interval j. Let kSi,j

indicate the number of fossil occurrences along sub-branch Si,j , then let κSi,j = 1Z+(kSi,j )

indicate the presence a fossil specimen for species i in interval j. Define LSi,j as the

duration of sub-branch Si,j . If species i spans the entire interval j and κSi,j = 1, then

LSi,j is simply equal to the total length of the interval (tj−1 − tj).

In order to compute the full likelihood under presence absence sampling, we first

consider the likelihood only in the earliest interval for a single species. Let F indicate the

set of species with at least one recovered fossil sample. Then, let αi = min{j : κSi,j = 1}

indicate the index of the earliest interval in which species i ∈ F was sampled. Next,

consider the fossil samples appearing in interval l(oi) other than the first sample at oi.

Using the same approach as Theorem 14 in [3], we integrate over the unknown occurrence

times of these kSi,αi
− 1 fossils, then sum over kSi,αi

to give the following expression for

the joint density (for fixed oi) of the datum κSi,αi
and parameters bi, di

f [κi,αi , bi, di, oi = t | λ̄, µ̄, ψ̄, ρ] ∝ f [Di, oi = t | λ̄, µ̄, ψ̄, ρ] eψαi (t−δi)

where δi = max{di, tαi} and the constant of proportionality is ψ
kSi,αi

−1

αi
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Next, because we ultimately consider oi as unknown, we integrate the probability

density over oi, giving the following integrated expression for the joint density of of

κSi,αi
and bi, di

f [κSi,αi
, bi, di | λ̄, µ̄, ψ̄, ρ] =

1 δi+LSi,αi

δi

f [κSi,αi
, bi, di, oi = t | λ̄, µ̄, ψ̄, ρ]dt

∝
1 δi+LSi,αi

δi

e
ψαi (t−δi)f [Di, oi = t | λ̄, µ̄, ψ̄, ρ]dt

∝ f [Di | λ̄, µ̄, ψ̄, ρ]
1 δi+LSi,αi

δi

e
ψαi (t−δi)

!qαi(t)

qαi(t)
dt

∝ f [Di | λ̄, µ̄, ψ̄, ρ] e−ψαi (δi−tαi )Hi

where

Hi =

22222e
− 1

2
(λαi+µαi−ψαi−Aαi )(t−tαi )

3
1 +Bαi

Aαi − (λαi + µαi − ψαi)
− (1−Bαi)e

−Aαi (t−tαi )

Aαi + (λαi + µαi − ψαi)

422222

δi+LSi,αi

δi

and the constant of proportionality is

!ql(oi)(oi)
ql(oi)(oi)

ψ
kSi,αi

−1

αi

Then, using the same approach as Theorem 17 in [3], we marginalize the counts and

occurrence times of the fossil samples for species i in the remaining intervals, yielding

the joint probability density of (κSi,j )j∈1...l and bi, di

f [(κSi,j )j∈1...l, bi, di | λ̄, µ̄, ψ̄, ρ] ∝ f [κSi,αi
, bi, di | λ̄, µ̄, ψ̄, ρ]

"

j>αi

5
e
ψjLSi,j (1− e

−ψjLSi,j )

6κSi,j

where the constant of proportionality is

"

j>αi

ψ
kSi,j

j
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Finally, the full joint density of all species ranges and all presence absence data

Dl = {(bi, di, (κSi,j )j∈1...l)i∈1...n} is therefore

f [Dl | λ̄, µ̄, ψ̄, ρ] =
n"

i=0

f [(κSi,j )j∈1...l, bi, di | λ̄, µ̄, ψ̄, ρ]

∝ f [D | λ̄, µ̄, ψ̄, ρ]
"

i∈F
e
−ψαi (δi−tαi )Hi

"

j>αi

5
e
ψjLSi,j (1− e

−ψjLSi,j )

6κi,j

(7)

where the constant of proportionality is

"

i∈F

!ql(oi)(oi)
ql(oi)(oi)

ψ
kSi,j

−1
αi

l"

j>αi

ψ
kSi,j

j
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